
Wrappers, Aspects,
Quantification and Events

Robert E. Filman
Research Institute for Advanced

Computer Science
NASA Ames Research Center

rfilman@mail.arc.nasa.gov

2

Talk Overview

Object Infrastructure Framework (OIF)
A system developed to simplify building
distributed applications by allowing
independent implementation of multiple
concerns

Essence and State of AOP
Trinity

Quantification over Events
Current work on a generalized AOP
technology

3

Co-conspirators

Stu Barrett, Diana Lee, Ted Linden
Dan Friedman
Klaus Havelund, Dave Herman, Jeff Palm
Tzilla Elrad, Siobhán Clarke, Mehmet Aksit

Part 1: Object Infrastructure
Framework

5

Object Infrastructure Framework (OIF)
Microelectronics and Computer Technology
Corporation (MCC) project to simplify building
distributed systems (1997-98)
Developing distributed applications is difficult

Hard to achieve systems with systematic properties,
(ilities) e.g.:

Reliability
Security
Manageability
Quality of Service
Scalability

Distribution is complex
Concurrency is complicated
Distributed algorithms are difficult to implement
Every policy must be realized in every component
Existing frameworks are difficult to use

6

Functional and Non-Functional
Requirements

Functional: Non-functional (ility):

Function 1
& ility support

Function 4
& ility support

Function 2
& ility support

Function 3
& ility support

Functional requirements
map to specific components

Availability Reliability

Security Manageability ResponsivenessFunc. Req. 2 Func. Req. 4

Func Req. 1 Func. Req. 3

Ility requirements map
almost everywhere

8

The Problem:
Managing the Service Space

Programmers when writing code have to keep
cognoscente of when to invoke which ilities
Compatible support for ility requirements
(security, consistency, responsiveness, etc.) is
a key component integration problem
Ilities impose difficult upgrade requirements on
component subsystems

Algorithms that support ilities are usually intertwined
with the subsystem functional logic.
Separately developed subsystems may have chosen
different algorithms (for encryption, transactions, etc.)
Close examination of the system required when
evolving ilities

9

Research Hypothesis

Ilities can be achieved by inserting services
into the communication path between
functional components

On both sides of the communication divide

Frameworks that automate service insertion
can systematically achieve non-functional
requirements

Object Infrastructure Framework (OIF)

10

Architecture with Services in
Component Communications

Traditional designs mix ility support within functional components
Function 1

& ility support
Function 3

& ility support

Function 4
& ility support

Function 2
& ility support

OIF separates service functionality from functional logic by
inserting the services on the communications paths among

components.

Function 4
Decrypt

Queue Mgmt
Function 2

Encrypt

Pass Priority

Decrypt

Queue Mgmt.

Replication

Function 1
Encrypt

Set Priority
Function 3

Decrypt

Queue Mgmt

11

Distributed Object Technology
Several approaches:

Socket based
Message based.
Remote Procedure Call
Web services

Object based
Distributed Object Technology allows for OO
applications to be implemented using some
objects that do not reside in the same address
space (virtual machine).

Key semantic of DOT is providing location transparency
CORBA: Objects provide services described in an
Interface Definition Language (IDL)

CORBA allows object-oriented applications to be written
in multiple languages.
Java RMI is monolingual CORBA

12

Using Stubs and Skeletons as Proxies

A client application
makes a method
invocation on the stub.
The Stub “implements”
the IDL defined interface
by being a proxy for the
actual implementation
object.

Similarly, the Skeleton acts as a proxy for the client
application (from the implementation’s perspective).
The implementation object needs to have the actual
code for each method defined the IDL interface.

Network

Client
Application

CORBA
stub

Server
application

object

CORBA
skeleton

13

How Proxies Work

Marshaling handles all of the issues relating to
transmission and translation of the various data types.
The ORB on the server machine demarshals the client’s
request, and invokes the skeleton. The skeleton calls the
appropriate implementation object method. The process
is applied in reverse to the return value.

The stub “implements” the
IDL defined interface. The
operation’s arguments are
put into a request object,
marshaled and passed over
the network to the server
machine. Network

Client
Application

CORBA
stub

CORBA
skeleton

Server
application

object

15

Compiling Stubs and Skeletons

The IDL compiler produces both client-side
stubs and server side skeletons.

CORBA
IDL

Compiler

Application
code

Stubs

 Skeletons

Application
IDL

Linked together to build
the distributed application

16

Distributed Object Proxies

What they do:
Provide object location transparency
Hide details of communication protocols

What they do not do:
Handle partial failures (reliability).
Security related issues.
Quality of service issues.
…

OIF Challenge: Can we leverage the “proxy”
design to address these missing characteristics?

17

Key OIF Ideas
Injecting behavior on the communication
paths between components

Injectors are discrete, uniform objects
Injectors are by object/method
Injectors are dynamically configurable

Annotated communications allow injected
services to pass parameters to service peers
(e.g., message priority, user-id, tracing status)

Thread contexts preserve annotations
through calls

Pragma: High-level specification language for
describing desired injections

18

Configurable Proxies

 OIF’s injectors can operate in pairs (e.g., encrypt/decrypt; request
authentication/authenticate) or singly (e.g., retry on failure; log results)

 Configuration is by proxy/method instance
 Configuration is dynamic

Authenticate

Retry

Management

Reliability

CORBA
Proxy

Check auth.

Quality of Service

Management

Reliability

CORBA
Skeleton

Client Server

Network

23

Injector Features

Ability to access/mutate method arguments
and return value.
Ability to pass meta-data (property sets)
between themselves to coordinate their
behavior.
Access to CORBA’s DII and DSI services

Access/modify function arguments, return value
Change “target” of request (load balancing, reliability)

Fully capable code module.
Can be multi-threaded.
Can access other objects/services
Throw/catch exceptions

24

Injector-enabled services
Caching of static object attributes reduces
repetitious remote requests and enables “delayed
call by value.”

Serialization of arriving requests reduces cognitive
load on application developer.

Reified requests allow reasoning about priorities

Targets allow application components to invoke
logical destinations rather than a specific object
(so injected services can do load-balancing,
replication, transaction processing, redirection,
etc.)

Futures enable asynchronous interaction between
application components while writing synchronous
code.

25

Ilities must be grounded in the reality of invoking
actual services

Reality

Saying you want security doesn’t produce security.
Rather, you have to decide that you’ve got security if
you

Encrypt all communications using { 64|128|3 } bit { DES |
RSA | ROT-13 }
Check the user’s { password | fingerprints | DNA } for { every
| occasional } access to { all | only sensitive } methods
Recognize intrusions that { come from strange sites | try a
series of passwords | ask too many questions }
Keep track of privileges by { proximity | job function |
dynamic agreements }

Need to have (implementations) of the algorithms
Need to know where which algorithms are to be
applied in which circumstances

27

Pragma: OIF’s Quantification Language
Problem:

Locally:
Arranging for the appropriate injectors to be on the
appropriate methods in the right order for each proxy
Precluding incompatible injectors

Globally:
Achieving ilities

Solution:
Pragma: A high-level, declarative specification
language for defining

Ilities
Ways to achieve ilities (i.e. which injectors + parameters
to run to get that ility)
The mapping for each ility to the methods of the
application objects

Pragma compiler:
Takes declarative specification and compiles Java
injector initializations

29
Pragma Example

policy vendoom is
 import vendoom;
 import injectors;
 ility Context, Secur ity, QualityOfService,
 Reliability, Efficiency;
 var pr ior ity : int = {1};
 var retr ies : int = {5} only f rom client;
 for Context do copyContext;
 for Secur ity on request in Controller do iButton;
 for QualityOfService on call in ByPr ior ityController

do queuing;
 group cached Stuff on identifier, on descr iption, on

valueTo;
 for Efficiency within cachedStuff do caching;
 for Reliability do retry ;
 define copyContext for Context as
 client ContextInjectorFactory do first,
 server ContextInjectorFactory do last;
 define iButton for Secur ity do last as
 client server injectors.

AccessControlPkg.AccessControlInjectorFactory,
 client server injectors.

IdentificationPkg.IButtonIdentificationInjectorFactor
y;

 define queuing for QualityOfService as
 server injectors.

QManager.QueueManager InjectorFactory;
 define caching for Efficiency as
 client CacheInjectorFactory do after copyContext;
 define retry for Reliability as
 client ErrorRetryInjectorFactory (retr ies = {"5"})

do last;
end;

This is policy vendoom.

These are namespace imports.

Vendoom uses five ilities. For each
ility, class and method, there (may)
be more than one way to achieve
that ility.

Var declares annotations, their
types, default values and when
they’re copied to thread contexts.

For each ility, we can declare a
mapping from a location (on method
in class) to how that ility is to be
achieved.

Here we define the mapping from the
achieve names to injector factories.
The “do” clauses specify a partial
ordering on the injectors.

31

OIF
Pragma
Compiler

IDL User written

Code OIF library

Linked together to build
the run-time system

Application
code

Application
Pragma

Compilation Process

OIF
IDL

Compiler
Application
CORBA IDL

Pragma OIF-generated

OIF
 Stubs

OIF
Initialization

Compiler Compiler

Injector
Library

Part 2: Aspect-Orientation

34

Separation of concerns

A fundamental engineering principle is
that of separation of concerns

Realizing different system concepts as
separate, weakly linked elements
Distribution of expertise

Separation of concerns promises better
Maintainability
Evolvability
Reusability
Adaptivity

Concerns occur at both the
User/requirements level
Design/implementation level

35

Examples of Software Concerns
Security

Always call the security check before allowing database
access

Accounting
Always debit the user’s account on each access to a service
of objects in the class…

Synchronization
Don’t let multiple users call any of methods f, g, or h on a
single object simultaneously
The effects of these actions should be transactional

Quality of service
Queue up the waiting calls handling them by priority

Reliability
Provide replicants of this object

Performance enhancements
Cache the results of calls to elements in this class
Display routines should show the results of changes, except
display routines called in the scope of other display routines
should buffer their changes for display all at once

37

In conventional programming, the code for
different concerns often becomes mixed-together

(tangled)

Aspect-Oriented Programming
Concerns crosscut

Apply to different modules in a variety of places
Concerns must be composed to build running
systems
Aspect-Oriented Programming (AOP) is
centered on

Separate expression of crosscutting concerns
Mechanisms to weave the separate expressions into a
unified system

Alternatives for specifying, modularizing and
organizing software systems

38

Aspect-Oriented Software
Development

Aspect-Oriented Software Development
is concerned with applying crosscutting
separation of concerns technology
throughout the software lifecycle
More on this later

39

Real AOP Value

We don’t have to define all these policies
before building the system
Developers of tools, services, and
repositories can remain (almost)
completely ignorant of these issues
We can change policies without
reprogramming the system
We can change policies of a running
system

40

AOP Technology

Software engineering technology for
separately expressing systematic
properties while nevertheless producing
running systems that embody these
properties
Need to express

Base program
Separate concerns
How the separate concerns map to the base
program

Or, if you prefer, just a jumble of program elements
that must be combined.

41

Traditional Separation of Concerns

Subprograms (procedures, functions, methods)
Inheritance

These do a good job of concern separation, but
The programmer has to explicitly invoke the desired
behavior
The programmer has to always be aware of when to
invoke what behavior
Changing a policy (that’s not already embodied in a
subprogram) requires finding all the places that need
modification and changing them

AOP is an alternative to this regime

42

AO Terminology 1
Concern: Something we care about in an
engineering process.
Crosscutting concern: Concerns that in a given
organization (modularization) of a system find
themselves scattered throughout that
organization.

What is crosscutting is a function of both the
particular decomposition of a system and the
underlying support environment.

Code tangling: Ordinarily, implementing
crosscutting concerns usually results in code
tangling

Would prefer cohesive modules with simple interfaces
Aspect: An aspect is a modular unit designed to
implement a concern.

43

AO Terminology 2
Join point: A well-defined place in the structure
or execution flow of a program where additional
behavior can be attached.
Join point model: The kinds of join points a
system allows

 Examples: method calls, field definition, access and
modification; exceptions; and execution events and
states.

Advice: The behavior to execute at a join point.
Advice is often used to realize the behavior that
satisfies a concern
Advice can run before, after, around, instead of or
concurrently with the original behavior

44

AO Terminology 3

Pointcut designator: A description of a
set of join points.

Usually, a universal quantification
Composition: Bringing together and
causing to interact separately defined
software elements.
Weaving: The process of composing core
functionality modules with aspects,
thereby yielding a working system.

45

AO Terminology 4

Statics and Dynamics: When decisions
are made

Static elements are ones that can be
determined before the program begins
execution,

Typically at compile time
Dynamic elements happen at execution.
This can apply both to

Weaving
The join point model

46

AO Terminology 5

The Tyranny of the Dominant
Decomposition:

Base programs with aspects vs..
Uniform element soup

Key subtexts
Do aspects apply to aspects?
Is there a separation between describing what
aspects exist and how they apply to the system?

47

In programs P, whenever condition C arises,
perform action A.

The space of AOP language design

Dimensions of concern for the designer
and implementer of an AOP system:

Quantification: What kinds of conditions C
can be specified.
Interaction: What is the interface of the
actions A. That is, how do they interact with
base programs and each other.
Weaving: How will the system arrange to
intermix the execution of the base actions of
P with the actions A.

48

Quantification

Join point model
Over which elements and events can one
quantify

Static quantification refers to elements
recognizable in the source code

Lexical structure (bad idea)
Syntactic Structure
Compiler semantic structure

Dynamic quantification refers to the pattern
of dynamic execution events

49

Interaction
The structure of the aspect code
Interactions among aspects

Including which runs first and how conflicts are
recognized and resolved
Ordering

How aspects communicate with each other and
the base code

Visibility
Aspect parameterizations

50

Weaving

How does the system arrange to
intermix the aspect and base behaviors

Compilers
Link-level wrapping
IDL compilers
Object-code modifiers
Meta-interpreters

51

AOP approaches
Wrapping
technologies

Composition filters
OIF

Frameworks
Aspect-Moderator
Framework
JAC

Compilation
technologies

AspectJ
HyperJ

Post-processing
strategies

JOIE
JMangler

Event-based
EAOP

Meta-level strategies
Heron
QSOUL/Logic Meta-
Programming

52

Quantification and Obliviousness

The unifying element of these
approaches (and the characterizing
definition of AOP) is the ability to state
universally quantified programmatic
assertions (quantification) on programs
that have not been explicitly prepared to
receive these assertions (obliviousness).

Quantification: A given assertion can have
effect in many places in the system
Obliviousness: One can’t tell for examining
the local program source that the aspect will
be invoked.

Surgery

53

Aspect-Oriented Software
Development

In general, programming is about realizing a set
of requirements in an operational software
system.

An evolving set of desired properties
Build a system to meet those requirements

Software engineering is the accumulated set of
processes, methodologies, and tools to ease
that evolutionary process, including techniques
for figuring out what it is that we want to build
and mechanisms for yielding a higher-quality
resulting system.
Aspect-Oriented Software Development is
concerned with applying cross-
cutting–separation-of-concerns technology
throughout the software lifecycle

54

Software Lifecycle

Requirements
Specifications
Design
Implementation
Testing/validation
Maintenance
Evolution

57

Software Ilities
correctness
efficiency
maintainability
portability
reliability
predictability
interoperability
fault tolerance
recoverability
learnability
analyzability

adaptability
reusability
robustness
testability
verifiability
comprehensibility
consistency
traceability
evolvability
measurability
modularity

58

Aspect-Oriented Software
Development

Work on (almost) all the elements of the
lifecycle
Most work on

Process (often tied to CASE tools)
Modeling

UML modifications and uses for AO

Starting to see work on
Testing
Evolution

Part 3

Trinity
Syntax Semantics

Dynamics

60

Over What can one Quantify?

What is the space of possible join point
models?

Static structure of the program
Lexical structure (bad idea)
Syntactic Structure
Static (semantic) compiler analysis

Things that happen during the execution of a
system

61

Things that Happen during
Program Execution: Events

Events are with respect to the abstract
interpreter of a language
Software dark matter

Garbage collection
Thread swapping

Unfortunately, language definitions don’t
define their abstract interpreters.

62

What can one change?

Structural changes
Insert, delete, embed, rename

Behavioral changes
Before, after, embed, elide

63

Trinity — An Extreme Experiment

The extreme of expressiveness in
quantification is to be able to quantify
over everything statically deducible from
the program and over all the history of
events in a program execution
Map from natural expressions to changes
in the underlying system

64

Research regime

Define a language of events and actions
on those events.
Determine how each event is reflected
(or can be made visible) in source code.
Create a system to transform programs
with respect to these events and actions.
Developing an environment for
experimenting with AOP languages (DSL
for AOP)

65

The Elements of Discourse
Syntactic: Elements recognizable in the parse
structure of a program

While loops
The parameter “x”

Semantic: Elements recognizable by doing static
semantic analysis

All references to this field or type
Dynamic: events arising out of program
execution.

Objects satisfying a property
Calls within a particular stack context
Dark matter
History

66

Actions

Changes are realized by
Transforming the program
Inserting/calling additional behavior

Libraries

67

Goal

Want to be able to uniformly describe
desired changes about a system and
have these changes realized by

Transforming the original code
Including inserting run-time checks for
dynamic conditions

Want to be able to “smoothly” express
anything a programmer might want to
say about a program

Part of the complexity is integrating
statements over different kinds of things

68

Kinds of Events

Events that correspond to the execution
of a particular instruction

“The setting of X”
Events that correspond to the transition
of a predicate from false to true

When the value of X + Y gets to be greater
than 10.

Events restricted to being achieved
within a particular class or thread
Events over multiple other events

Predicates on the entire execution history
Dark matter events

69

Shadows
The shadow of a quantification is the places in
the code that might need to be changed to
realize the quantification
Sometimes there is a strong correspondence
between syntactic structures, semantic objects
and dynamic events

Sometimes there’s not
Sometimes one can shrink the shadow by more
detailed analysis

Parallel to array bounds analysis in compilers
For some predicates, the shadow may be
(unrealistically) large

 All potential null pointer exceptions

70

Elements and Shadows

The shadow of syntactic predicate is
usually just the syntactic element that
satisfy that predicate
The shadow of a semantic predicate is
often the corresponding syntactic
elements, but sometimes these elements
don’t exist in the text of the program

An inherited method
The implicit call to the super constructor at
the beginning of a constructor

71

Events and shadows

Dynamic shadows can be complex, and
may include

Single concepts that are spread out over
distributed loci
Tempering the semantics to make
assumptions about

Unexaminable code
Aliasing

Preserving state
Temporal logic
Code reorganization and inferring properties
for dark matter analysis

72

Trinity behavior
Transform programs based on pattern-action
rules

When the pattern of a quantification is seen,
transform the program to perform the behavior
desired in the action
Rules like database queries
Predicates include

Logical connectives
Temporal connectives
Program events including expression transition

Transformations can be either
Structural: change the original program
Behavioral: perform some action before, after, around
or instead of an original target

Structural changes on events don’t make sense

73

Transformational Alternatives

For Java, can transform at
The source-code level

Human understandable
Can express some things that can be lost
by the compilation process
Can work on code that won’t compile
Output usable in all source-level tools

The byte-code level
More reliably captures certain events
Works even when lacking source code

74

Architectural View

Source Java
code

Event-action
descriptions

Event-
Edit

compilation

Transform

AST

Target Java
code

Parse PrettyPrint

75

Applications
Debugging
Profiling
Monitoring
Contextual
evaluation (the
"jumping beans"
problem)
Autonomic computing
Security

Concurrency
Resource
management
Refactoring
Persistence
User interface
consistency

Closing Remarks

77

Readings

78

Readings
AOP in general

Robert E. Filman, Tzilla Elrad, Siohbán Clarke, and Mehmet Aksit
(Eds.) Aspect-Oriented Software Development, Addison-Wesley,
2005
Communications of the ACM, Oct 2001 theme issue on AOP

AOP Is
Robert E. Filman and Daniel P. Friedman. "Aspect-Oriented
Programming is Quantification and Obliviousness." Chapter 2 in
AOSD book

OIF
Robert E. Filman, Stu Barrett, Diana D. Lee, and Ted Linden. Inserting
Ilities by Controlling Communications. Communications of the ACM,
Vol. 45, No. 1, January, 2002, pp. 116–122.

 http://ic.arc.nasa.gov/people/filman/text/oif/cacm-oif.pdf
Event-based AOP

Robert E. Filman and Klaus Havelund. Source-Code Instrumentation
and Quantification of Events. AOSD 2002 Workshop on Foundations
Of Aspect-Oriented Languages (FOAL), Twente, Netherlands, April
2002.

http://ic.arc.nasa.gov/~filman/text/oif/aop-events.pdf

79

More readings: AOP Bibliography

www.aosd.net/technology/aosd-
bibliography.pdf
www.aosd.net/technology/aosd-
bibliography.bib

80

Questions/Discussion

Syntax and Semantics Kevin T. Kelley 2000

